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Underlying the present-day approach to the problem of the onset of turbulence is the 
hypothesis that the phenomena determining the development of instability are finite-dimen- 
sional. Experimental data on the laminar turbulent transition [i, 2] support this stand- 
point, although rigorous mathematical formulation of this assertion, the theorem of the 
central manifold [3, 4], has been proven only for bifurcations of loss of stability by a 
stationary point. Intuitive arguments at present [5] sugges~ the probable existence of a 
finite set of excited degree of freedom, which determine the dynamics of the system over 
long times for more complex regimes of motion than the limit cycle. 

In view of this, it is of considerable interest to determine the number of independent 
variables, which uniquely describe the potentially infinite-dimensional motion of a dissipa- 
tive continuous medium, when the number of degrees of freedom, really set in motion, is not 
known beforehand. The necessary number of such variables is assigned by a one-to-one mapping 
of the phase space of asymptotic motion in Euclidean space, whose dimension will be called 
the dimension of embedding. 

In this communication we propose a direct method of determining the dimension of embedd- 
ing directly from experimental data, on the basis of an examination of the functional rela- 
tion between the variables. Along with the embedding dimension we consider the scaling di- 
mensions [6, 7] and the possibility of measuring them experimentally. The experimental data 
obtained in a study of the laminar-turbulent transition in circular Couette flow are analyzed 
in regard to dimension. 

i. Dimension of Embedding. Suppose that for a dissipative dynamic system we measure 
the time dependence of a large number of different quantities xi(t), i = 1 ..... N. If the 
motion is finite-dimensional, the number of independent variables in n e and the first n e of 
the measured x i are in a one-to-one correspondence with the phase coordinates of the attrac- 
tor, then any measured quantity x k when k > n e is a function (generally speaking, an unknown 
function) of the phase variables xl, ..., Xne and its evolution with time can be represented 
functionally in terms of the time dependence of the phase coordinates: xh(t)= Ik(x,(t) ..... x,~(t)). 

If for all k we verify whether or not there exists a functional dependence of Xk+1(t) on the 
preceding k measurable quantities x1(t) , .... Xk(t), then clearly the functional dependence 
will appear for the first time at k = ne, since the phase variables themselves are function- 
ally independent. If the motion is infinite-dimensional, then such a functional dependence 
cannot appear at any k. 

The geometric functional dependence is represented by a smooth surface in a (k + l)- 
dimensional space. If x.~ is a point through which the phase curve passes at time to, then 
in the case of motion on an attractor in an infinitely long time the phase curve will return 
arbitrarily close to the point. We introduce a k-dimensional Euclidean metric ph(t, t0)~ 

0 Suppose that Li= (x~(t)--x?)~- We take a sphere of radius E with center at the point x i. 

d(E) is the largest value d(t, to)=Ixk+,(t)--x~+,l for all points of the phase curve which 

fall inside this sphere in an infinitely long time. Then, with a smooth functional dependence 
for small ~ we obtain small d(E) and a constant C, such that the condition d(e) < C~ is 
satisfied, should exist. If there is no functional dependence, then Xk+1(t) takes on values 
which do not depend on xi(t) (i <- k) and, therefore, it is possible that d(t, t o ) ~ 0 even at 
Pk = 0. In this case lim d(e) > 0. 
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Fig. 2 

The embedding criterion has a simple geometric interpretation. Let us project the phase 
curve onto the plane of variables �9 p(t, to), d(t, to). Then d(E) as a function of e has the 
connotation of an envelope from above for that projection. In the case of embedding the en- 
velope enters the point with coordinates (0, 0) with a nonzero slope. Otherwise, the envel- 
ope approaches the vertical axis with a nonzero value d(0), which is commensurate with the 
dimensions of the attractor. 

Let us consider the example of a phase trajectory, wound on a two-dimensional torus: 
z i ~ (a + bcos~2) cos~1, x2 = (a-~ bcos~2) shi~1, and ~ = bsin ~ where a > b > 0. Suppose that 
thephase trajectory is specified by the equations ~ = ~it, ~s = ~t with incommensurate 
~z and ~2. Locally the torus is two-dimensional, but the coordinates of a point on its sur- 
face (~l, ~2) are not determined uniquely by two Cartesian coordinates. This is because a 
straight line, which in the case of a general position pierce the torus at two points, corre- 
sponds to fixed values of the coordinates, e.g., (x I, x2). If the functional dependence of 
the coordinate x~ on x I and x 2 is verified by the proposed method, then in the two-dimen- 
sional (p, d) plane d(0) will be equal to the length of the segment intercepted by the pierc- 
ing points on the straight line given by the equations x I = xz(t 0) and x 2 = x2(t0). When 
any one of the three coordinates, taken with a delay, is verified for the functional depend- 
ence, we obtain d(0) = 0 and, therefore, the two-dimensional torus is embedded into the 
three-dimensional space. 

If the phase trajectory is open, then in an infinitely long time its projection onto the 
(p, d) plane everywhere densely fills the neighborhood of any point through which it passes. 
In this case there exist t such that the projection passes arbitrarily closely to the d axis 
and the envelope from above d(e) is defined correctly for any arbitrarily small E. 

In the experiment the measurements are made in a time T m at small but finite intervals 
AT. As a result of the limitation on the finiteness of Tm, the (p, d) plane is not filled 
densely everywhere. A line of finite length in the general case is embedded into three- 
dimensional space in the exact sense. Accordingly, when k ~ 3 there exists an ep such that 
only that part of the phase curve which passes through the point x ~ at the time t o falls 
within the sphere Ix - x~ = Ep. 

All of this means that the passage to the limit as E + 0 is impossible and that the 
intermediate asymptotic form of d(E) must be determined in some range of scales (Cmi n, emax). 
As Emi n we should take a value which is several times the value of ~p averaged over the 
attractor. As for Ema x, the condition ~min ! ~max ! R (R is the slze of the attractor) should 
be satisfied. 

Draw a straight line along the envelope d(e) by the method of least squares in this 
range of scales and extrapolating it to E = 0, we obtain a new formulation of the embedding 
criterion. If the segment intersected on the d axis by the straight line is much smaller 
by modulus than the range of variation of d, then the embedding dimension has been reached. 

We note that the choice of Ema x becomes too subjective. Moreover, processing of experi- 
mental realizations showed that the envelope of the two-dimensional projection on the left and 
from above often has the form shown in Fig. i by the criterion just formulated, the attrac- 
tion is embedded into the space, if we confine ourselves as much as possible to smaller 
scales and set emax < ~2. There are several objections to this. First, as the realization 
increases in length, E 2 can decrease and the criterion ceases to be satisfied. Second, it 
may be that on a sphere of radius e2 the function xk+1, being a function of xi(i = i, ..., k), 
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is multiple-valued. Third, as a rule, e 2 << d o , where d o is comparable with the attractor 
dimensions, and the addition of Xk+ I as a new coordinate substantially increases the metric 
distance to those points to which it was slightly larger than g2, and d = d o . 

These concepts and observations give rise to a final form of the embedding criteria such 
that small scales are not mentioned at all. The dimension of the space was increased until 
the envelope became a single-valued function , emerging from zero and lying entirely below the 
straight line d = CPk (C is small). The estimate so obtained for the dimension of embedd- 
ing may sometimes be too low. As is evident from the analysis carried out, however, this 
requires a detail study in each specific case. 

2. Experiment. The dimension of the embedding and the scaling dimension with respect to 
nets [6,.7] was calculated for attractors of the laminar-turbulent transition in circular 
Couette-Taylor flow with a rotating internal cylinder. The measurements were made on a hydro- 
dynamic stand, which was described in [8]. The diameter of the inner cylinder was d i = 35 mm. 
Liquid filled the gap, thickness A = i0 mm and height 280 mm, between the cylinders. For this 
geometry a configuration of 28 Taylor vortices and a flexural mode of the vortices, with six 
periods along the length of the neighborhood, correspond to the main state of flow. Using 
the electrodiffusion method [9], we measured the local shear stresses simultaneously at three 
different points on the inner surface of the immobile cylinder, corresponding to the bound- 
aries of neighboring pairs of Taylor vortices. The measured signals were collected and pro- 
cessed with a computer. 

The experiment was carrid out in the range 0.015 Re c to 1.05 Rec, where Re c = 1030 is the 
critical Reynolds number for the formation of azimuthal waves (Re = ~diA/2v , ~ is the angular 
velocity of the cylinder, and v is the kinematic viscosity). A typical experimental realiza- 
tion consists of 64,000 or 128,000 points for each channel at a quantizing frequency of 16 Hz. 
The Reynolds number was maintained to within no worse than 0.15% during the measurements. 

We used two methods to construct the phase space: the first coincided with the generally ac- 
cepted [10-13] construction from one measured variable and in the second method the space was 
constructed from three measurable quantities, which were read at the same time, after which a 
shift by a constant interval T was made. 

The phase space was constructed from slow envelops of signals, calculated by filtration 
at the frequency of oscillations of the azimuthal, waves. A filtered envelope was an ensemble 
of 8000 points with a l-second interval between points, which correspond to roughly 80 points 
in the characteristic period of a slow envelope. In constructing the phase space of high di- 
mension, we took the time shift to be equal to 40 quantization intervals, i.e., roughly half 
of the period. 

The series of rearrangements of the flow, which were observed in the experiment, was 
described in [9]. Below we examine regimes corresponding to two-dimensional tori and attrac- 
tors following them. The numbers of the regimes m = i, 2, 3, 4, 5, 6, 7, 8, and 9 correspond 
to Re = 1051.8, 1058.2, 1060.3, 1061, 1062.9, 1064, 1065, 1066, and 1066.8. 

3. Calculationof the Dimension and Discussion of the Results. Figure 2 shows the depend- 
ence of the embedding dimension on the number of the experiment. The two-dimensional projec- 
tion in the coordinates (Pk, d) was constructed for 15 points, uniformly distributed along 
the realization of the signal, and the results of their superposition on each other was shown 
on a graphic display. The superposition of several projections reduces the probability of the 
dimension being undervalued, since the solution for the embedding is determined by the worst 
of all the cases. 

In relation to previously studied regimes it is known that m = 1 corresponds to the limit 
cycle, m = 2 corresponds to a resonance torus with 13/31 rotations, and m = 3 corresponds to 
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a resonance torus with 3/7 rotations [9]. For m = 3 the embedding dimension n e = 4, which 
is too much for a torus. This may be because the points at which the phase trajectory 
pierces the transversal plane do not lie on a closed curve homeomorphous with the neighbor- 
hood, as should be the case for a torus, but form a fairly diffuse cloud [9]. The diffusion 
may be due to both experimental noise and the fact that the attractor in fact is not a torus. 
As we see from Fig. 2, the number of variables sufficient for describing the flow remains 
small in the region of the laminar-turbulent transition. We should also note the nonmono- 
tonic dependence of n e on Re, which indicates that the attractor may become more complicated 
or simpler as the nonlinearity increases. 

Let us now discuss the results of measurements of the dimension from nets. In doing 
this we determine the number of points N(e) in the net of mesh e that covers the attractor. 
The dimension of the limit cycle should be one. Figure 3 shows the projection of the cycle 
onto the plane of the initial variables (a) and the plane of variables found by the time- 
series method (b). Figure 4 shows the dependence of the local slope d F of the curve of in 
N versus In ~, which was obtained by the method of nets in the range of scales from 2"i0 -l to 
4"10 -2 for these two methods of constructing the phase space. The values of In N were cal- 
culated for 20 values of g with different intervals on the logarithmic scale. The slope was 
determined by the method of least squares from three points. We see that only in case b was 
a segment with slope near i observed in the region of intermediate scales. The absence of 
such a segment in case a is due to the pronounced elongation of the cycle along the diagonal. 
Scales at which only one branch of the cycle passes through a square of area ~2, but the noisi 
hess of the trajectory does not have an effect, vanish because of this. 

When m = 2, according to Fig. 2, three variables must be used. We assume the range of 
variation of signals for each variable to be equal to unity, whereupon the discretization step 
is such that the average distance between two successive points in time is of the order of 
10 -2 . The range of ~ from 2"i0 -l to 2"10 -3 will be divided into 14 steps, which are uniform 
on the logarithmic scale. The dependence of the slope of the curve of in N vs. in(e -I) is 
shown in Fig. 5. We see that at the first six points (i.e., in the range E = 2"I0-I-3.8"i0 -2) 
the dimension with respect to the nets is nearly 2. Calculating d F as the average over six 
points, we obtain d F = 2.07 Z 0.04. The error indicated here is the interpolation error, 
which can be calculated in the ~tandard way (from the rms deviation). The accuracy of mea- 
surement of the hydrodynamic parameters from experiment is no worse than 10 -3 . We emphasize 
that with the indicated accuracy (4-10 -2 ) we find, instead of the dimension from its literal 
topological definition (including the limit as N ~ -, ~ ~ 0), the scaling index for a range of 
scales and a finite-dimensional set of points. The measurement of the dimension for m = 2 is 
consistent with the hypothesis in [9] that the attractor is two-dimensional. The numbers d F 
(are close to 2), which were obtained for m > 2, are considerably less reliable. This is 
because as the number k of variables used increases the error in the determination of d F in- 
creases approximately according to the law Ad ~ e -I/d. This increase is due to the effective 
reduction of the number of points in the phase space for each of the k Variables. For ex- 
ample, for m = 5 we have k = 3 and d F = 2.15 • 0.07, k = 4 and d F = 2.14 t 0.14, k=5 andd F=~ 

2.06 Z 0.29, and k = 6 and d F = 1.91 • 0.36. From this it follows, in particular, that at- 
tempts to find a sufficient number of variables from the saturation of dF(k) involve consider- 
able difficulties. For a more reliable measurement of the scaling dimensions it is necessary 
to increase the number of points in the initial realization, not by reducing the discretiza- 
tion step (on which d virtually does not depend) but by extending the observation time. This 
requires new experiments to be formulated. 

It should be pointed out that since it is difficult to make an a priori estimate of the 
error contributed to the determination of the scaling dimensions by the finiteness and dis- 
creteness of the trajectory, with present-day experimental and computational capabilities 
it is scarcely meaningful to speak of measuring a fractional part of d F. Measurement of po- 
sitive Lyapunov exponents [12-18]. An an integer-valued quantity d F is an interesting char- 
acteristic of the dimension of the manifold into which an attractor can be mapped locally 
[6, 12, 18]. The embedding dimension (global characteristic) that we have proposed is equal 
to the dimension of Euclidean space, into which this manifold could be embedded without self- 
intersections. A regular procedure for constructing the minimum set of variables necessary 
for a local description of the attractor (local coordinates in the manifold) is lacking. It 
is important, therefore, to make an upper estimate of the number of variables of the general 
position which are necessary for describing the flow. This estimate is given by the embedd- 
ing dimension n e. 
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Since the local nature of the embedding criterion has been discarded for calculating 
n e, we must process a much smaller body of data than for determining the scaling dimensions. 
The altorithm for finding n e is simple, does not require a large volume of calculations, and 
is easily implemented on a computer. 

Since the local nature of the embedding criterion has been dropped, the embedding dimen- 
sion n e, e.g., of a complex periodic trajectory, may be higher than three. The value of n e, 
which is too high in comparison with the local criterion, can in this case be evidence of 
the complex arrangement of the cycle and the high probability that it will be transformed 
into a more complex regime of motion, no longer allowing a reduction of n e, when the param- 
eters of the system are disturbed. 

The foregoing discussion permits a general conclusion to be made: determination of the 
embedding dimension should be the first step in the study of the finite-dimensional dynamics 
of a continuous medium or a finite-dimensional system with a very large number of degrees of 
freedom. 

We thank V. S. L'vov and A. A. Predtechenskil for their discussion of the work and E. A. 
Kuznetsov for a stimulating influence during the writing. 
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